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upon a U(n - 1, n - 1) group: 11. Recursion relations for the 
SU(2) and SU(3) Wigner coefficients 

C Quesnet 
Physique Theorique et Mathematique C P  229, Universiti Libre de Bruxelles, Bd du 
Triomphe, B 1050 Brussels, Belgium 

Received 12 September 1986 

Abstract. The new solution to the S U ( n )  external state labelling problem, proposed in the 
first paper of this series, is analysed in detail in the SU(3)  case in terms of the two 
complementary chains U(3)  x U(3)  3 U(3)  and U ( 2 , 2 )  2 U ( 2 )  x U(2) .  The classification of 
S U ( 3 )  coupled states is completed by the labels of an intermediate U(2)  irreducible 
representation h' = [ h i h ; ] ,  directly related to King's branching rule for U(3)  x U(3) 3 U(3) .  
For pedagogical purposes, the SU(2)  coupled state construction, based upon the com- 
plementary chains U(2)  x U(2)  3 U(2)  and U( 1, 1 )  2 U( 1) x U(  l ) ,  is considered first. For 
both SU(2)  and SU(3) ,  it is proved that, in  addition to the standard recursion relations, 
the corresponding Wigner coefficients satisfy recursion relations of a different type, arising 
from the action of the U( 1, 1 )  or U ( 2 , 2 )  complementary group generators. A detailed 
example shows that such complementary recursion relations are quite useful for numerical 
purposes 

1. Introduction 

The purpose of this series of papers is to present a new solution to the SU( n )  external 
state labelling problem or, equivalently, to the internal state labelling problem for the 
chain U ( n )  x U ( n )  3 U ( n )  when ( n  - 1)- row U ( n )  irreducible representations (irreps) 
are considered. Such a solution is based upon the complementarity relationship 
(Moshinsky and Quesne 1970, Howe 1979) between the chains U ( n ) x  U ( n )  2 U ( n )  
and  U ( n  - 1, n - 1 )  I> U(n  - 1 )  x U(n  - 1)  (Kashiwara and  Vergne 1978, King and 
Wybourne 1985, Quesne 1986b). 

The first paper in this series (hereafter referred to as I and whose equations will 
be subsequently quoted by their number preceded by I )  was devoted to a presentation 
of the general solution and  to the demonstration of its interesting group theoretical 
properties (Quesne 1987a). It indeed directly reflects the operation of King's U ( n )  x 
U ( n )  2 U ( n )  branching rule (1970, 1971), which is just a reformulation of the well 
known Littlewood-Richardson rule (1934), valid for mixed U(  n )  irreps (Flores 1967, 
Flores and  Moshinsky 1967, King 1970). 

Since the proposed solution uses S U ( n  - 1) Wigner coefficients, it is based upon a 
recursive procedure. Hence, the first step in an  explicit state construction is a detailed 
study of the SU(3)  case, for which the complementary chains are U(3)  x U(3) 2 U(3) 
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and  U(2 ,2 )  2 U(2)  x U(2).  Such is the purpose of the present paper. Since much 
insight can be gained by first considering the complementary chains U(2)  x U(2) 3 U(2) 
and  U(  1, 1) 2 U( 1) x U( I ) ,  for which there is no missing label, we shall actually begin 
with a review of the SU(2)  state construction. For both SU(2)  and SU(3),  we shall 
prove that in addition to the standard recursion relations, the corresponding Wigner 
coefficients (wc)  satisfy recursion relations of a different type. By working out a 
detailed example, we shall also show that the present solution to the state labelling 
problem is not only interesting from a group theoretical viewpoint, but also quite 
useful for practical purposes. 

In $ 2 ,  we review the construction of SU(2)  wc based upon U(  1, l ) ,  and in § 3, we 
apply it to derive recursion relations. In 0 9  4 and 5, the corresponding problems are 
solved for SU(3). In $ 6 ,  we describe various procedures for orthonormalising the 
SU(3) WC. In 0 7, we work out a detailed example. Finally, $ 8 contains the conclusion. 
Except when stated otherwise, the notations are the same as in I. 

2. SU(2) Wigner coefficients in terms of U ( 1 , l )  

The purpose of the present section is to apply the results of I to construct SU(2)  
coupled states, and  thence SU(2) wc. 

SU(2)  coupled states are states classified according to the group chain 

U(2)  x U(2) = U(2)  2 U( 1) 
h h’* K w 

where below each group we have indicated the labels characterising its irreps. Here 
h, h’ and K are shorthand for [ b o ] ,  [ h’O] and [ k,  - k ’ ] ,  respectively, where h, h’ ,  k and 
k‘ are non-negative integers, and p is an  integer such that - k ’ s  p 6 k. Throughout 
this paper, an  asterisk on an irrep label is used to denote the contragredient irrep, i.e., 
if f =  [flyi.. . J 1 ] ,  then f *  = [ - f n , .  . . , - f 2 ,  - f,], hence h’* = [0, -h’] .  According to 
King’s branching rule (1970), given in equation (12.121, an  irrep K is contained in the 
product h x h‘* provided that 

h - k = h ’ -  k‘ = h’ 0. (2.2) 

As is well known, there is no missing label o in the chain (2.1). 
Following I ,  we now consider the complementary chain 

U ( 1 , l )  3 U(1)  x U(1)  
[ k ;  k ‘ ]  h h’ (2.3) 

where below each group we have again indicated the labels characterising its irreps. 
All the SU(2)  coupled states corresponding to given irreps K and p of U(2) and U(  1) 
and  to the various irreps h x h’* of U(2) x U(2) containing K ,  i.e. satisfying condition 
(2.2), belong to a single infinite-dimensional irrep of U(1, 11, specified by [ k ;  k’] .  
Hence, they can be written as 

[ k ;  k ‘ ]  I? h’* 

(2 .4)  
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where on the left-hand side we use the notation of equation (13.151, and on the 
right-hand side the simplified notation of the present paper. Their explicit form is 
given by 

l ( h h ’ * ) ~ p )  = A P h ’ “ ” ‘  ( Dj2)/(  k k ’ * )  K/L) 

where 
(2.5) 

P h ‘ x h ’ (  D:?) = ( D;?Jh‘ (2.6) 
and 

A = [( k + k‘+ 1)  h‘ ! (h ‘  + k + k’+ 1)  (2.7) 
The latter can be obtained either by direct calculation or by using a coherent state 
technique (Quesne 1987b). In the following, we shall not need the explicit form of 
the states I (  k k ’ * ) ~ p ) ,  which could be deduced from equations (15.1)-(15.3). Such states 
will be referred to as stretched ones, since they correspond to the stretched product 
of the irreps k and k‘*. 

The SU(2) w c  are the transformation coefficients between the states classified accord- 
ing to the chains (2.1) and 

U(2) x U(2) 2 U( 1) x U( 1) 
h h’* q q’* 

where U( 1) x U( 1) is generated by the operators a;, and 9’,’] (cf equations (12.3) and 
(12.7)). The states transforming under (2.8) can be written as 

(2.9) 
77 ,2  form a contravariant vector, whereas 

To compare the present construction of SU(2) wc with standard ones, let us rewrite 

lhq, h’*q’*) = [ q ! ( h  - q ) ! q ’ ! ( h ‘ -  q’)!]-1’2(qll)Y 7 7 1 2 ) h - Y ( 7 7 2 1 ) 4  ( - 7 7 * ? J h  -4  IO) 

where we have taken into account that 77] 

r l Z l ,  7722 form a covariant one. 

the chains (2.1), (2.3) and (2.8) in terms of unimodular groups as follows: 

SU(2) x SU(2) = SU(2) = U(1) 
j j ’  J M 

S U ( l , l ) ~ U ( l )  
K 0 

SU(2) x SU(2) = U(1) x U( 1). 
j j ’  m m’ 

(2.10) 

(2.11) 

(2.12) 

The generators of the  SU(2)  x SU(2) group are defined in terms of a:, and P’,’,, s, t = 1,2 ,  
by the relations 

(2.13) 

while those of its U(  1)  x U ( l ) ,  SU(2) and U(1)  subgroups are j o ,  j ; ,  J = j + j ’  and J o ,  
respectively. On the other hand, the SU(1, 1) generators are 
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where KO generates the U ( l )  subgroup. Note that the operator 
2 

G ,  = 9 1  I + p ) ? 2  = El I - E22 = c ( 7 7 1  5 5 1 s  - 772s5’c) 
s = 1  

(2.15) 

which is the common first-order Casimir operator of U(2) and U( 1, l ) ,  commutes with 
both sets of operators J , ,  J - ,  J o ,  and K,, K - ,  K O .  Its eigenvalue is p = 2( j - j ’ ) ,  while 
those of K 2 = - K + K - + K o ( K o - 1 )  and  K O  are K ( K - I ) ,  where K = J + l  and Q =  
j + j ’ +  1, respectively. The quantum numbers specifying the irreps in equations (2.10) 
and (2.12) are related to the labels in equations (2.1) and  (2.8) as follows: 

h = 2 j  h’ = 2j’ k = j - j ’ +  J k ’=j ’ - j+  J 
(2.16) 

p = j - j ’ + M  q = j + m  q l  = j‘ - 1 

In the SU(2) notation, the states (2.5) and (2.9) can be rewritten as 

I j j ‘ J M )  = [(2J + 1 ) ! ] I i 2 [ (  j + j ’ -  J ) ! (  j + j ’ + J  + 1)!]-”2( K+)1+”-’lfi7‘JM) (2.17) 

and  
I jm ,  j’m‘) = [( j + m ) !  ( j  - m )  ! ( j ’ +  m’)  ! ( j ’ - m  I ).] , - 1 i 2  

x ( 7 7 1 1  )Itm ( 7 7 , * ) ’ - m (  7721 -”(- 77 22 )J’+” 10) (2.18) 

where i= ( j  - j ’+  J ) / 2  and  7 = ( j l -  j + J ) / 2 .  Hence all the coupled states with total 
angular momentum J and projection M can be obtained from the stretched state 
!fi:’JM), for which J + F  = J, by successive applications of K,. 

Equation (2.18) coincides with equation (3.30) of Schwinger (1969,  except for the 
fact that the realisation of K ,  (denoted YC, by Schwinger) is different. One can actually 
go from Schwinger’s analysis to the present one by the replacement of a:, a:, b;,  b l  
by v 1  I ,  7 7 1 2 ,  - 7722 ,  7 7 2 1 ,  and a similar substitution for the annihilation operators. Such 
a transformation, quite immaterial for SU(2), has however far-reaching consequences 
when going to higher SU(n)  groups. The extension of the present operators K,, K - ,  
KO is indeed straightforward, whereas Schwinger’s ones X , ,  YL, X,, cannot be directly 
generalised. Together with three additional operators $+, g-, $0,  also considered by 
Schwinger, the latter indeed form the generators of an SU( 1 ,  1) x SU(2) group, locally 
isomorphic to S0*(4) .  Since S0*(4)  is complementary with respect to USp(2) (Quesne 
1985 and references quoted therein), Schwinger’s treatment depends on the local 
isomorphism between USp(2) and SU(2), which cannot be extended to higher n values. 

In the next section, we shall use the present construction of SU(2) wc to derive 
some recursion relations. 

3. Recursion relations for the SU(2) Wigner coefficients 

It is well known that by considering the matrix elements of the SU(2) generators 
P12 = J ,  and 921 = J -  between a coupled state and an  uncoupled one, one finds two 
recursion relations for the SU(2) wc (see e.g. Edmonds 1957): 

~ J J ,  M ) ( j m , j ’ m ’ l J M )  

= f , ( j ,  m ) ( j m  * 1, j’m’lJM * l)+.f*(j’ ,  m’ ) ( jm ,  j ‘ m ’ k  1 / J M  * 1) (3.1) 
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When used in conjunction with the orthogonality properties of wc and the Condon- 
Shortley phase convention (1939 ,  they lead to Racah’s formula (1942) for the SU(2) wc. 

The complementary nature of the SU(2) coupled states (2.17) leads to another set 
of recursion relations, which will be referred to as the complementary ones, as opposed 
to the former set, referred to as the standard ones. The complementary recursion 
relations are obtained by considering the matrix elements ( jm,  j‘m’[K*l j Ff  j ’ T f  J M )  
of the SU(1, 1 )  generators K ,  and K -  between a coupled state and an uncoupled one. 
From equation (2.17) and the commutation relation 

(3.3) [ K - ,  K,] = 2Ko 

we readily obtain 

~ , l j  ~ f j ‘ ~ f  J M )  = [ ( j  + j ’  - J + f ~  f ) ( j  + j‘ + J + $ ~ + ) ] ” ~ 1  j j ’ ~ ~ ) .  (3.4) 

On the other hand, the action of K ,  on the bra ( j m ,  j’m’l can be easily determined 
from equation (2.14) and the known action of vis and tis on the states (2.18). The 
resulting relations are 

F+( j  + j’ - J, j +j’ + J + 1 )( jm,  j’m’ 1 J M )  

= F * ( j + m , j ’ - m ‘ ) ( j r f  m + f , j ‘ T f  m’If lJM) 

- F,( j - m, j ’ +  m ’ ) ( j  T f  m * f ,  j ’T  m’F f I J M )  (3 .5)  

F*(a, a’)  = [(a+f’Ff)(a’ifFf)]’’*.  (3 .6)  

where 

Contrary to the standard relations, where j ,  j ’  and J are kept fixed, the complementary 
ones are characterised by given values of j - j ’ ,  J and M. They were obtained by 
Bargmann (1962) by a generating function technique. However, the present derivation 
clearly exhibits their group theoretical foundation. 

The complementary recursion relations can be iterated in the same way as the 
standard ones to give Racah’s formula. By solving the first relation, corresponding to 
the upper signs in equation (3 .5 ) ,  we can indeed express ( jm,  j ’m’ IJM)  as a linear 
combination of stretched wc (Jfi, Fm’l J M ) ,  for which ;= ( j  - j ’+ J ) / 2  and j’i = 
( j ’ - j + J ) / 2  add to J.  From the second relation, corresponding to the lower signs in 
equation (3 .5) ,  the stretched w c  can then be determined in terms of one of them, 
namely ( J M  -7,F 7 I J M )  or ( J  -1 7 M + J I  J M )  according as M 3 j ’ -  j or M < j ’ -  j .  
Finally, the latter is obtained from the orthogonality properties of w c  and the assump- 
tion that stretched wc are positive. Since the latter is a consequence of the Condon- 
Shortley phase convention, the phase choices made for the coupled and uncoupled 
states in equations (2.17) and (2.18) are consistent with such a convention. 

An interesting property of the complementary recursion relations is that they reveal 
the existence of those Regge symmetries (1958) which remain hidden when considering 
only the standard recursion relations. From the latter, only the twelve Regge symmetries 
resulting from the six permutations of the columns and the interchange of the first two 
rows of the Regge array 

j + m  j ’ + m ’  J - M  
j - m  j1-m’ J + M ]  

- j+j‘+J j - j ’ + J  j + j ’ - J  
(3.7) 
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are obvious. It is however clear that the w c  ( j m ,  j ’m’ l JM)  and ( $ ( j  + j ‘ +  M )  i( j - j ’ +  
m - m’) ,  i ( j  + j ’  - M )  $ ( j  -j’ - m + m‘) 1 J j  - j ‘ )  satisfy the same complementary recur- 
sion relations. Hence they can only differ by a coefficient dependent on j - j ‘ ,  J and 
M (and independent of j + j ’  and m - m’).  From the w c  orthogonality properties, it 
results that such a coefficient must reduce to a phase factor. For j + j ’  = J,  both wc  
are stretched ones which are positive, so that the phase factor is actually equal to one. 
We conclude that 

( jm,  j ’ m ’ i J M )  

= ( f (  j + j ’ +  M )  f ( j  - j ’ +  m - m’) ,  &+it-- M )  4cj-j’- m + m’) l J j  - j ‘ )  
(3.8) 

proving the symmetry of the w c  under transposition of the Regge array (3.7). By 
combining the latter with the symmetries under permutations of the columns, we obtain 
the six symmetries under permutations of the rows, and thence the full 72-element 
symmetry group first encountered by Regge. 

Before generalising the present analysis to SU(3) in $ 5  4 and 5 ,  it is worth noting 
that the second complementary recursion relation, corresponding to the lower signs 
in equation (3.5), has not been used in its full generality, but only to calculate stretched 
wc. For such a purpose, only the action of K -  on stretched states is needed, namely 

K-lh7’JM) = 0 whenever J+? = J. (3.9) 

This relation directly results from the coupled state definition (2.17) and does not 
make use of equation (3.3). 

4. SU(3) Wigner coefficients in terms of U(2,2) 

SU(3) coupled states are states classified according to either the group chain 

U(3) x U(3) =r U(3) =) U(2) =) U(1) 
h h’* K A = A ’ *  

or 

U(2,2)  = U(2) x U(2) =) U(1) x U(1).  

[ k ;  k ’ ]  h h’ f f‘ 

(4.1) 

(4.2) 

Here h = [ h , h , O ]  and h ‘ = [ h j h ; O ]  for U(3), h = [ h , h J  and h ‘ = [ h j h S ]  for U(2), K =  

[ k , , k , - k ; , - k ; ]  and [ k ; k ’ ] = [ k , k , ; k j k ; ] ,  where h , Z h , 2 0 ,  h I Z h S 2 0 ,  k , Z k , a O ,  
k ;  3 k ;  a 0, and either k ,  = 0 or k ;  = 0. In the latter case, for the U(2) subgroup irreps 
we use the notation A = [ A , A 2 ]  with A ,  3 A 2  and A ,  2 0, while in the former we employ 
A‘* =[ -AI . ,  - A : ]  with A’, > A ;  and h’ ,2O.  In the relations to be derived below, the A 
notation is used throughout, thus implicitly assuming that k i  = 0. Whenever k ,  = 0, we 
only have to replace A ,  and A,  by - A i  and -A’, respectively. 

According to King’s branching rule (1970), the multiplicity of K in h x h’* is equal 
to the number of U(2) irreps h i  = [ h l h r ]  such that h and h’ are respectively contained 
in the products k x h’ and k’  x h ‘, where k = [ k ,  k 2 ]  and k’ = [ k’, k i ] .  From I, it follows 
that the classification of states according to either chain (4.1) or (4.2) can be completed 
by W = h ’ ,  where, since h I + h l = h , + h , - k l - k 2 = h l + h 5 - k j - k ; ,  there is only one 
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independent label, as it should be. By using notations similar to those of equation 
(2.4), such states can be written as 

= I f f ’ ;  (hh’*)h  ‘ K A P )  
h ‘ h  h’ 
ff‘ ’ A 

P 

= A , , ~ [ P ” ‘ x ” ’ ( D ~ )  X / ( k k ’ * ) ~ / \ p ) ] : z F ,  

where Ah, is a normalisation constant, 

i = 1, 2 , j  = 3 , 4  
\ = 1  

(4.3) 

(4.4) 

and  the square bracket notation means that the U(2) x U(2) irreps k x k’ and h‘ x h’ 
are coupled to h x h’. 

Since in any case the states (4.3) are not orthogonal with respect to h‘, it  is more 
convenient to suppress the normalisation constant in their definition and  to work with 
the non-normalised states 

i f f ’ ;  (hh’*)h~KAll . ) )=[ph‘Xhi(D:)  X l ( k k ’ * ) ~ A p ) ] ~ ~ f ,  (4.5) 

whose detailed expression reads 

x m - i ( h  i + h;)li( h ,  - h z ) f -  +( h ,  + A?))(;( kl - k i )  1 ’ -  ; ( k {  + k i ) ,  

f (  h ;  - h:)  ” - ; ( h i  + h:)ll( h i  - h i ) f ’ - i (  h i  + h i ) )  

x PEr”Ll (D:,)Il/‘; ( k k ’ * ) ~ A p )  (4.6) 

where ( , 1 ) denotes an  SU(2)  wc. By using U(2)  lowering operators (Nagel and 
Moshinsky 1965), the polynomials PKct, ( D , ) ,  transforming under the irreps h i  x h’ 
and m x m‘ of U(2) x U(2)  and U(  1) x U( 1 )  respectively, are readily obtained from 
equation (14.4) in the form 

PK,*:,‘( 0,) = [ ( h i  - m ) !  ( m  - h : ) ! ( h ;  - m ’ ) ! (  m’- h ; ) ! ] ’  

x ( DT2,+,)”: 1 [ (  Y - h ; ) ! ( m  - v ) ! ( m ’ -  v)!(hl- m - m’+ .)!]-I 

where 

The explicit expression of the stretched stated I//’; ( k k ’ * ) ~ A p )  will not be needed in 
the following and will therefore not be given here. Those states (4.5) whose weight is 
highest in U(2)  x U(2)  are simply denoted by 

1 ( h h ’* h ’ K A  /L )) I h , h ; ( h h ‘* ) h ‘ K A p )). 

U(3)  x U(3)  = U(2)  x U ( 2 )  = U( 1 )  x U( 1) 
h h’* q q’* r r’* 

(4.9) 

SU(3)  uncoupled states are states classified according to the group chain 

(4.10) 
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h h‘* 

(; , ;:: 

where q = [ q 1 q 2 ] ,  q ’ = [ q { q ; ] ,  q 1 > q 2 > 0 ,  q:zq;zO, r a O  and r ’ 2 0 .  In analogy with 
equation (4.3), they can be written in either notation 

- h h’* 
h h’; 4 q r * )  = Iff‘; hqr, h’*q’*r’*). 
f f ’  r r’* 

(4.11) 

Whenever their weight is highest in the U(2) x U(2) subgroup of U(2 ,2)  and in the 
first U(3) group, and lowest in the second one, such states become 

I h (max), h’*(min)) = Ih, h ‘1 ; h (max), h’*(min)) 

= [ ( h l  - h2+ l ) ( h ;  - hi+ l ) ] ’ ” [ ( h l  + l)!hl!(hi + l ) !  h ; ! ] - ” 2  

( 7 7 1 1 ) h ’ - h 2 ( 7 7 1 2 , ~ 2 ) h 2 ( 7 7 3 1 ) h ’ - h ’ ( - 7 7 3 4 , ~ 2 ) h ’ 1 0 )  (4.12) 

K 

; h ‘ ) = ( h q r ,  h’*q’*r’*l(hh’*)h‘KAp)) (4.14) 

where 

h h’* ir 9 q’* 
r’* 

K 

A ;  hT) 
p 

(4.15) 

In the next section, we shall derive the recursion relations satisfied by the SU(3) RWC 

(4.16) 

which are the overlaps of the SU(3) coupled states (4.9) with the SU(2) coupled ones 

Ihq, h’*q‘*, A P ) = C  ( f ( q i - 9 2 )  r - f (q i+q2) , f (q ; -q ; )  
r r ’  

- r ’ + t ( q ’ l + q ; ) / f ( A ,  - A 2 )  p - ; (A,+A,) ) (hqr ,  h‘*q‘*r’*) (4.17) 

and are independent of p, 
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5. Recursion relations for the SU(3) reduced Wigner coefficients 

By considering the matrix elements of PI,, 923, P3]  and P32 between an  SU(3) coupled 
state and an SU(2) coupled one, one obtains the four standard recursion relations for 
the SU(3) RWC (see e.g. Hecht 1965, Draayer and Akiyama 1973)t, 

correspondingto u = [ l O ] , i = [ A , + l ,  A2], [A , ,A2+l ] , and  u=[O, -1] , i=[A,-1,A2],  
[ A , ,  A 2 -  11, respectively. In equation (5.1), the summations run over cj = [q l  * 1, q 2 ] ,  
[ q , ,  q2* 11, and  i j ' =  [ q l  1, q;], [ q ; ,  q;F 13, where the upper signs correspond to 
u = [ l O ]  and  the lower ones to u=[O, -11; the U coefficients are U(2) recoupling 
coefficients, equivalent to SU(2) ones (Edmonds 1957) according to the relation 

where 

and  

Note that not only h, h'* and K ,  but also the additional label h', are kept fixed. The 
latter, characterising the transformation properties of the U(3) scalar polynomials 
PK,"k'(D;) under U(2) x U(2), cannot be changed by the SU(3) generators used to 
derive the recursion relations. 

The complementary recursion relations for the SU(3) RWC are obtained by consider- 
ing the matrix elements of Dl and D,,, i =  1,2,  j = 3 , 4 ,  between an  SU(3) coupled 
state and  an SU(2) coupled one. Only those of Dl  assume a simple form and will be 
considered here in full generality. Following the discussion at the end of 8 3, those 
of D,, are only needed in the stretched state case, to which we shall therefore restrict 
ourselves. 

t For the states classified according to U ( 3 )  3 U ( 2 )  3 U( l ) ,  we use the phase convention o f  Baird and 
Biedenharn (1963) and Nagel and Moshinsky (1965), which differs from !hat of Hecht (1965). 
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Let us begin with the calculation of the 0, matrix elements. Our starting point is 
the set of two relations 

ph’Xh‘(D,) m x m  = [ p [ l O l X [ l O l  (0,) x P ” ’ x ” ’ (  D ~ i ) ] ~ ~ ~ ~ ’  (5.7) 

where Ki =[i i i i ]  is either [ h i - l ,  h i ]  or [ h i ,  h;- l ] .  Here the U ( 2 ) x U ( 2 )  irreps 
6‘ x i‘ and [ 101 x [ 101 are coupled to h‘ x h ‘, and the components P::f“”’, p, p ’  = 1, 
0, coincide with the 06 operators, as follows from equation (4.7). The proof of equation 
(5.7) is by direct substitution of equation (4.7) for m = m’= h i .  

By introducing equation (5.7) into the SU(3) coupled state definition (4.6) and by 
changing the coupling order, we obtain the set of two relations 

I (hh’*)h’KAp))=x U ( k ,  E‘, h,[10]; h; h‘ )U(k ’ ,F ‘ ,  h‘,[10]; i’, h i )  
66, 

where k ‘ = [ h ; - l ,  h ; ]or [h ; ,  hi-l],thesummationsrunover~=[6,&]=[h,--l, hJ,  
[ h , ,  h z - l ] ,  p = [ i i h i ] = [ h i - l ,  h i ] ,  [ h i ,  hi-11, and  in the square bracket the U(2)x  
U(2) irreps i x  p and [lo] x [ lo]  are coupled to h x h’. Equation (5.8) is the counterpart 
of the relation corresponding to the upper signs in equation (3.4). When we take the 
scalar product of both sides of equation (5.8) with an  SU(2) coupled state and use 
the completeness of the latter set, we obtain the recursion relations sought for: 

= c U ( k ,  p, h, [IO]; 6, h ’ ) U ( k ’ ,  F‘, h’, [lo]; p ,  h i )  
6k 

corresponding to E ’ = [ h ; - l ,  h J  o r  [ h i ,  h;-l] .  Here cf=[ql&], cj’=[ij14;] and 

F (  hq, h’q’, Fcj, pq’, A )  

- - ( A q ,  A 11 p[~o lx [~~!  (Di)l(6cf, p*4’*, A )  (5.10) 

is a reduced matrix element with respect to the U(2) x U(2) subgroup of U(2,2). 
The calculation of F(hq ,  h’q’, Eq, pg’, A ) ,  carried out in the appendix, is based 

upon the Wigner-Eckart theorem for both SU(2) and  SU(3) (see e.g. Edmonds 1957, 
Hecht 1965). In the latter case, the only RWC needed are the fundamental ones, which 
are multiplicity free. Once normalised to unity, they are independent of the method 
used in their derivation (except for a possible overall phase factor). Since only the 
ratios of RWC corresponding to the same SU(3) irreps enter our tormulae, the difference 
in normalisation and overall phase, if any, is irrelevant. We have therefore taken their 
explicit values from the work of Biedenharn and Louck (1968). 

The result for F ( h q ,  h’q’, kj, pij’, A )  can be written as 

F(hq ,  h‘q’, Kcj, pg‘, A ) =  G(q,  q’, cf, cf’, A ) H ( h q ,  Lcf)H(h’q‘,  K ’ i j ‘ )  (5.11) 

in terms of two functions G(q, q’, 4, q’, A )  and  H ( h q ,  6cj). In tables 1 and 2, the 
non-zero values of the latter are listed in terms of the increments 

(5.12) 
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Table I .  Non-zero values of the function G (  q, q ’ ,  q, S’, A ) in terms of the  increments A q l .  
A q 2 ,  A q ;  a n d  A q i .  

Table 2. Non-zero values of the function H ( h ,  q, h; Q )  in terms of the increments A h l ,  
A q l ,  A h 2  a n d  A q , .  

Ahl A q l  A h Z  Aq2 H ( h , q ,  h; 4)  

It follows that the recursion relations (5.9) may contain up to twenty terms. In most 
cases of practical interest, however, only a few of them actually occur. 

By iterating equation (5.9), any RWC 

can be obtained from the stretched RWC 

for which i‘ = [O] has been omitted since such RWC are multiplicity free. 

state case. Our starting point is the relation 
Let us next consider the calculation of the D,, matrix elements in the stretched 

D , , l ( k k ‘ * ) ~ A p )  = O  (5.13) 

which is the counterpart of equation (3.9). By taking the scalar product of the Hermitian 
conjugate of equation (5.13) with an SU(2) coupled state, and by using the completeness 
of the latter set, we readily obtain 

F (  kq, k’q’ ,  Lq, F’q’, A ) 
Y 4 ’  4 9’* 

(5.14) 

Regardless of whether k2 = 0 or k i  = 0 ,  equation (5.14) represents a set of two relations, 
each containing at most three terms. Whenever k i  = 0, for instance, for some fixed 
values of cj and q’, the two relations correspond to ,&’= [ k , ,  k ,  - 1][ kl - 1,0]  and 
[ k ,  - 1, k J k {  - 1,0], respectively, while the summation runs over q q ’ =  [ ~ j , 4 ~ ] [ ( t l O ] ,  
14, + 1,421[4’1+ 1901, and  [41 ,  4 2 +  11[41+ 1,OI. 
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From table 1, it follows that 

G(q,  q‘, 4, 4’ ,  A )  = G(q’, 9, 4 ‘ ,  4, A * ) .  (5.15) 

Hence for fixed h“,  the coefficients in equations (5.9) and  (5.14) remain invariant under 
the substitution h t, h ’ ,  q t) q’, K + K * ,  A + A*. The RWC therefore satisfy the symmetry 
relation 

(5.16) 

which can be used to express the RWC with k 2 = 0  in terms of those with k i = 0 .  
Consequently, we shall henceforth restrict ourselves to the latter. 

The iteration of equation (5.14) is straightforward and leads to an  expression of 

h k’* 

4 4  

in terms of 

By using the standard recursion relations (5.1), the latter can be obtained from the RWC 

The complete result for the stretched RWC with k; = 6 is 

( , k‘* 1) = ( -l)41-Al[(kl + l ) !  k2! k; ! (k ,  - Al)! (k l  - A z +  l ) !  
4 4’* 

x (k, - A , ) !  ( A I  + k ;  + l ) !  ( A 2 +  k ; ) ! (q l -  k,)!(Al- q r ) !  (41 - 4 2 +  l)]”r 

x [( kl + ki + 1 ) !  (k, + k;) ! ( A 1  - kl)! (k l -  q l ) !  ( k l -  42 + l ) !  (kz - q?) !  

x (k ;  - q j ) ! (q l -  A l ) ! ( q l - A z +  l ) ! (q ,  - A , ) ! ( q ,  + l ) !  4 2  ! ] - I / * .  (5.17) 

Equation (5.17) provides us with the starting coefficients for the iteration of equation 
(5.9). Except in low multiplicity cases, the latter is difficult, if not impossible, by an  
algebraic procedure. However, equation (5.9) is well suited to numerical computation. 
In  this respect, it may be convenient to combine both recursion relations (5.1) and 
(5.9). Whenever A is maximal, i.e. A = k, equation (5.9) generally contains only a few 
terms and  is therefore easily solved. Equation (5.1) can then be used to obtain the 
RWC corresponding to lower A. 

Before presenting a detailed example of the resolution of equation (5.9), in the 
next section we shall review various procedures for orthonormalising the SU(3) RWC. 

6. Orthonormal SU(3) reduced Wigner coefficients 

The SU(3) coupled states (4.9) are not normalised to unity, nor are they orthogonal 
with respect to h’ .  Hence the same is true for the corresponding RWC. Orthonormal 
SU(3) coupled states and  RWC can be obtained in various ways. 
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Following the Bargmann-Moshinsky procedure (1961) for defining orthonormal 
basis states for the U(3) irreps in the chain U(3) 2 S0(3) ,  we can search for a Hermitian 
polynomial function X in the U(2,2) generators which commutes with the U(2) x U(2) 
generators. Provided that X is independent of the Casimir operators of U(2,2) and 
U(2) x U(2), and that its eigenvalues are distinct, its eigenvectors may serve as orthonor- 
mal basis states, characterised by the corresponding eigenvalues. A possible candidate 
for X is the operator 

2 

= [ D : ) + 2 E k r D k , j + 2 +  D ~ . , + 2 E k + 2 . , + Z D l , k + 2 l .  (6.1) 
1.j. k = I 

In such a procedure, however, the interesting group theoretical meaning of the addi- 
tional label h” is completely lost. 

Other methods make use of the overlap matrix of the non-orthonormal basis 

f , , ’ , h ’ ( h ,  h’*, K )  = ( ( ( h h ’ * ) h ” ~ A p  I(hh’*)h’KAp)).  (6.2) 

Such a matrix is obviously independent of the row Ap of the U(3) irrep K .  It  can be 
calculated either directly from the RWC determined in the previous section as follows: 

(6.3) 

or from the recursion relation 

x y ( h ’ ,  h’,  F, F ) U ( k ,  F ,  h, [lo]; E, h ” ) U ( k ’ ,  F ,  h’, [IO]; F,  A ‘ )  

x U ( k ,  F, h,[10]; E, h ’ ) U ( k ‘ ,  F, h’,[10]; F,  h’), 

x rii,is(E, K‘*, K )  (6.4) 

which was derived from a coherent state realisation of U(2,2) (Quesne 1987b)f. In 
equation (6.4), the summations run over = [ h i ,  h i -  11, [ h ; -  1, hi], F = [ h i ,  h3 - 11, 
[ h i  -1,h;], K=[hl ,h2-1] ,  [ h l - l , h 2 ] ,  p = [ h : , h ; - l ] ,  [h : - l ,h ; ] ,  and the 
coefficients A and y are, respectively, defined by 

A(h’, h, h’)  =;[A,( hl 4-4) f hz(h2 f 2) f A’,( h’, +4)  -k h;( h i +  2 )  

- hI (h t  + 3 )  - h i (h ;+  1) +9] (6.5) 

and 

where 

( Bh ) 2  = ( h ;  - h 4 + 1 )[ ( h ; f 1 ) ! h i  !]-I .  (6.7) 

Since equation (6.4) is easily solved either algebraically or numerically, by comparison 
with equation (6.3) it provides us with a useful check of the values obtained for the RWC. 

* Tne normalisation used by Quesne (1987b) differs from the current one, and so the former overlap matrix 
has to be multiplied by ( E h ’  Bhs) - l  to obtain the overlap matrix (6.2). 
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Orthonormal SU(3) coupled states (distinguished from the non-orthonormal ones 
through the use of a curly bracket instead of an  angular one) may be defined by 
(Deenen and Quesne 1984, Le Blanc and Rowe 1985, Quesne 1987b) 

(6.8) l (hh '*)h 'KAp}  =c I(hh'*)h' K/ \p , ) ) th ' l ' ,? \ (h ,  h'*, K )  
h'  

where t ' ' is the inverse square root of the positive definite Hermitian matrix r. 
Alternatively, they may be obtained by a Gram-Schmidt orthonormalisation pro- 

cedure similar to that applied by Vergados (1968), as well as by Draayer and Akiyama 
(1973). For such a purpose, let us enumerate the labels h i ( 'F ) ,  cp = 1 , 2 , .  . . , mlih  i K ,  in 
the order of increasing values of h i ,  i.e. hF"'< h~"". Then the orthonormal SU(3) 
coupled states are defined by 

'F 

I(hh'*)cpKApL) = c I(hh'*)(P'KAp,L))C, (6.9) 

where for simplicity we have substituted cp for hi(') ,  and the coefficients C ,  i' are 
determined by the requirement 

{ (hh '*)cF 'KAp, l (hh '*)cpKA~}= 8,q. (6.10) 

Since in most cases the overlap matrix (6.2) is close to a diagonal one, both 
prescriptions (6.8) and (6.9) have the advantage of approximately preserving the 
characterisation of states by h'. The second one leading to simpler algebraic results 
in low-multiplicity cases will be used in the present paper. Hence we define the 
orthonormal SU(3) RWC by the following relation: 

p - 1  

(6.11) 

I t  remains to fix the overall phase of the RWC. That of the non-orthonormal ones 
(4.16) is completely determined by the choice of signs in equations (4.6) and (4.12). 
The simplest and most natural way for fixing the phase of the orthonormal SU(3) 
coupled states, and consequently of the orthonormal SU(3) RWC, consists in defining 
C,, as a real and  positive constant. We shall therefore adopt such a convention. This 
is different from the ordinary procedure, where a particular RWC is assigned to be 
positive for each mode of coupling, i.e. each cp. In the present case, the latter convention 
could of course be introduced a posteriori. 

By working out a detailed example, in the next section we shall show that in 
low-multiplicity cases the resolution of the complementary recursion relations (5.9)  
combined with the prescription (6.9) leads to useful algebraic formulae for the RWC'.  

7. A detailed example 

Let us calculate the RWC appearing in the matrix elements of U(3) adjoint tensor 
operators, i.e. those transforming under the U(3) irrep [ l ,  0, -11. I t  is well known that 
such tensor operators are the first to exhibit a multiplicity problem, the irrep [ h I h,O] 
being contained twice in [ h ,  h20] x [ 1,0 ,  - 11 whenever h i  > h,  > 0. Baird and 
Biedenharn (1964, 1965) solved this problem by defining two independent unit adjoint 
operators, respectively characterised by (oi'ij) or p = 2, and ( I  0,) or p = 1. The first is 
proportional to the SU(3) generators, while the second is orthonormal to the latter. 
We shall therefore compare their RWC with the present ones. 
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Since, in SU(3), the irreps [ l ,  0, - 13 and  [0, -1, -21 are equivalent, we have to 
consider the product of U(3) irreps [h,h20] x [0, -1, -21, containing [ h ,  - 1, h2-  1, -11 
with multiplicity two if h ,  > h,  > 0, and multiplicity one if either h ,  = h2 > 0 or h ,  > h2 = 
0. Hence, in the present case, h = [h,h2], h ' =  [2,13, k = [ h ,  - 1, h 2 -  11 or [ h ,  - 1,01, 
and  k' = [ 1,0] or [ 1,1], according as h,  > 0 or h2 = 0. From King's branching rule, we 
find that h " = [ l , l ]  or [2,0] if h,>h,>O, h s = [ l , l ]  if h,=h,>O, and hs=[ l ,O]  if 
h ,  > h2 = 0. As explained at the end of 0 5, we shall restrict ourselves to the case of 
maximal A, i.e. A = [ h ,  - 1, h 2 -  13, where the complementary recursion relations (5.9) 
assume a very simple form. 

In the multiplicity-two case, there are four SU(2) coupled states, corresponding to 
qq'* =[h,h,][O, -21, [h,h,][-1, -11, [ h , h , -  l][O, -11 and [ h ,  - 1, h2][0, -11, respec- 
tively, and  hence eight RWC need to be determined. For each of them, equation (5.9) 
reduces to a single relation, associated with h'" = [ 1,0] and containing only four terms 
(instead of the twenty it may comprise in general). As a result, the eight sought-for 
RWC are linear combinations of six RWC 

with 

iQF*Q'*=[hl, hz-l,O][hI, h2-1][0,0, -2][0,-l],[h,, h2-1,0] 

[h i  - 1, h2 - ll[O,O, -21[OOI, [hi 9 h2- l,OI[hi 9 h2 - 11 

[ A ,  - 1, h21[0,0, -21r0, -11, [ h , -  1, h,,Ol[h,- 1, h2- 

X[O, -1, -11r0, -11, [ A ,  -1, h2,OI 

0, -21[001 
and  [ h ,  - 1, hZ, O][h, - 1, h,][O, 0, -1][0, -13, respectively. By now applying equation 
(5.9) to the latter, we can express them in terms of the single stretched RWC 

(k" ' ;o; 1 2 
equal to one. By combining both results, we obtain the analytical formulae given in 
table 3. For completeness, we also give there the RWC for the multiplicity-one cases. 
Note that the results for h, = h2> 0 can be obtained as a special case of those for 
h, > h, > 0. 

From equation (6.3) and  table 3, the overlap matrix t(h, h'*, K )  of the non- 
orthonormal basis becomes 

(7.1) 

) ( 2h,h2+3h,+5h,+6 -[3(h, - h,)(h, - h2+2)]1'2 
-[3(hl - h,)(h,  -h2+2)]1 '2  2hlh2+h,+3hz 

if h ,  > h, > 0 

if h ,  = h,> 0 

if h ,  > h2 = 0. 
( 2 ( h , +  l ) ( h , + 3 ) )  I ( h 1 + 3 )  

t(h, h'*, K )  = 

As it should, it coincides with the solution of the recursion relation (6.4) obtained in 
a previous work (Quesne 1987b). 

The orthonormal SU(3) RWC obtained from equations (6.9) and  (6.11) are listed 
in table 4. For comparison, those of Baird and  Biedenharn (1965) are given in table 
5 in the multiplicity-two case (see also Louck and  Biedenharn 1970); in the multiplicity- 
one cases, their RWC of course coincide (except for the phase) with the RWC of table 4. 
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Table 3. T h e  non-orthonormal s U ( 3 )  R W C  

( a )  h , >  h2>0 

h’ 

( b )  h , = h 2 > 0  

( c )  h,>h,=O 

8. Conclusion 

In the present paper, we have shown that the solution to the SU(n) external state 
labelling problem proposed in I leads to two sets of recursion relations for the 
SU(n)  RWC: the standard and  the complementary ones. As a matter of fact, the 
demonstrations have been restricted to SU(2) and  SU(3), but it is obvious that, at least 
in principle, they could be extended to higher SU(n)  groups. For SU(2), the comp- 
lementary recursion relations coincide with some relations previously found by 
Bargmann (1962), whereas, to the author’s knowledge, for SU(3)-and in general 
SU( n)-they have not been encountered before. 

Since both types of recursion relations result from the matrix elements of some 
group generators-either U( n )  itself, or its U(n - 1, n - 1)  complementary group-from 
a group theoretical viewpoint they stand on an equal footing. This contrasts with other 
solutions to the SU(n)  external state labelling problem, also based upon recursion 
relations different from the standard ones, such as the solutions proposed by Moshinsky 
(1963) and  Baird and Biedenharn (1964). In the SU(3) case, the former employs an  
indirect method, wherein the RWC are calculated from some auxiliary coefficients, 
themselves obtained by solving some recursion relations (Brody et al 1965). For the 
latter, Draayer and Akiyama ( 1973) devised a recursive computational procedure, 
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Table 4. The  orthonormal SU(3)  RWC 

4 4’* 1 2 

( b )  h , = h 2 > 0  

1 

( c )  h ,>h ,=O 

1 

Table 5. Baird and  Biedenharn orthonormal SU(3)  RWC 

P 

4 4’* 2 1 
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where the RWC are determined from parent ones by combining the characteristic null 
space properties of the SU(3) RWC (see e.g. Biedenharn et a /  1985) with the knowledge 
of the SU(3) generator matrix elements. 

The greater simplicity and elegance of the present approach have been obtained 
at the cost of the SU(3) coupled state and RWC non-orthonormality. This however 
cannot be regarded as a drawback of the theory since in other works, either orthonor- 
malisation (Draayer and Akiyama 1973) or diagonalisation (Brody et a /  1965) pro- 
cedures are also required. 

As has been shown for SU(3) in a detailed example, besides its interesting group 
theoretical properties, the present solution to the SU( n )  external state labelling problem 
is also quite practical for numerical purposes. A simple algorithm, combining both 
sets of recursion relations, has been outlined. Its basic ingredients are the stretched 
RWC. Hence it seems ideally suited to deal with the cases where some of the irreps 
labels are very large. This is a situation where, even in the SU(2) case, some computa- 
tional problems may arise. In the present construction, by acting with the complemen- 
tary recursion relations, the large labels may be decreased until one arrives at a stretched 
coupling. The validity of this observation remains of course to be checked in practical 
cases. For such a purpose, one would have to develop a computer code based on the 
algorithm proposed in this paper. Such a code would then provide an alternative to 
the presently available one (Akiyama and Draayer 1973). 

From a more fundamental viewpoint, the present work raises two interesting 
questions we hope to answer in forthcoming publications. The first one is whether 
there exists any relation between the Baird and Biedenharn solution (1964) and the 
present one. Although tables 4 and 5 show that they lead to different sets of RWC, 

some recent results on the SU(3) tensor operator structure (Biedenharn and Flath 
1984, Bracken and MacGibbon 1984, Deenen and Quesne 1986) hint at possible 
connections between both solutions. The second question is whether the generating 
function techniques, devised by Schwinger (1965) and Bargmann (1962) to derive the 
SU(2) wc properties, and later on extended to SU(3) by Resnikoff (1967) and Hage 
Hassan (19831, can be exploited to deal with the SU(3) RWC as defined in the present 
paper. 

Appendix. Calculation of F(hq, h'q', &j, Pq', A )  

The purpose of this appendix is to find the explicit form of F(hq ,  h'q',  iij, i'ij', A ) ,  
defined in equation (5.10). 

By applying the Wigner-Eckart theorem with respect to the U(2) x U(2) subgroup 
of U(2,2), F can be written as 

F(hq,  h'q', 6q, 6'ij', A ) = ( h q ,  h'q' ,  AIPC:li[lol(DL,)Ifiq, i'ij', A )  

x [<f(i, - h;) $(h, - i,), f m - f l f ( h ,  - h,) f ( h ,  - h,)) 

x (f(i{ - &) + ( R i  - ii), f m ' - $ l f ( h {  - h i )  f ( h { -  h; ) ) ] - '  (AI)  
in terms of two SU(2) wc and of the matrix element of PC~li!'ol( Db), where m = h ,  - i, 
and m ' =  hi - 6, between two SU(2) coupled states of highest weight with respect to 
U(2) x U(2). The problem therefore amounts to determining the latter. 

p [ l O l ~ [ l O l ( ~ ~ , )  m x m  = [ ~ [ I o o l  [001 ( m )  x r/[g;'l(m')]b""] - J ~ [ T [ ' " ]  ( m )  x U~~;~l(m')]! ,ool 
From equations (4.4) and (4.7), it follows that 

(A2) 
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where 

and 

are the components of irreducible tensors with respect to the first or the second U(3) 
group in the product U(3) x U(3),  respectively. In equation (A2), the square bracket 
denotes a coupling of U(2) irreps. 

By combining equation (A2) with standard U(2) recoupling techniques, we obtain 
the following result 

in terms of a U(2) recoupling coefficient and of reduced matrix elements with respect 
to the U(2) subgroup of U(3) c U(3) x U(3).  The Wigner-Eckart theorem with respect 
to U(3) enables to write the latter as 

x (h’*(min)l ut~”_;jl , , (m’)lF*(min)) (‘47) 
where U is either [lo] or  [OO]. 

(A6) and (A7) can be easily calculated and are 

( h  (max)l T[$L(  m ) I  6(max)) = ( h  *(min)l ~ [ g O - ; ; l ~ (  m ) I  i*(min)) 

[ ( h l  + l ) ( h ,  - h,)/(hl -A,+ 1 ) 1 1 / 2  
[h,(h,  - h , + l ) / ( h ,  - h 2 + 2 ) l 1 i 2  

By using equation (4.12), the matrix elements on the right-hand side of equations 

i f 6 = [ h l - 1 , h 2 , ~ ] , m = 1  
if 6 = [ A , ,  h2 - 1,0], m = 0. 

(AS) 
To obtain equation (5 .11 )  and the results of tables 1 and  2, it only remains to 

introduce equations (A5)-(A8) into equation ( A l )  and to replace the SU(2) coupling 
and recoupling coefficients, as well as the SU(3) RWC, by their explicit values. 

=I 
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